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Highlights  Abstract  

▪ Multi-class classification in 6 different classes 

pertaining to different faults commonly 

occurring in milling tool cutter. 

▪ Development of methodology based on 

unsupervised learning with very little training 

data needed. 

▪ Robustness of methodology shown with testing 

with blind data set from a different set of tool 

inserts. 

▪ Sensitivity studies to prove the robustness of 

the chosen parameters. 

 Tool condition affects the tolerances and the energy consumption and 

hence needs to be monitored. Artificial intelligence (AI) based data-

driven techniques for tool condition determination are proposed. 

Unfortunately, the data-driven techniques are data-hungry. This paper 

proposes a methodology for classification based on unsupervised 

learning using limited unlabeled training data. The work presents a 

multi-class classification problem for the tool condition monitoring. The 

principal component analysis (PCA) is employed for dimensionality 

reduction and the principal components (PCs) are used as input for 

classification using k-means clustering. New collected data is then 

projected on the PC space, and classified using the clusters from the 

training. The methodology has been applied for classification of tool 

faults in 6 classes in a vertical milling center. The use of limited input 

parameters from the user makes the method ideal for monitoring a large 

number of machines with minimal human intervention. Furthermore, 

due to the small amount of data needed for the training, the method has 

the potential to be transferable. 
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1. Introduction 

Controlled removal of material plays a significant role in 

subtractive machining which shapes a job into the preferred size. 

The term ‘controlled’ implies the coordination of a cutting tool 

and workpiece through a machine tool either manually or with 

the aid of computers. Turning, milling and drilling are the 

predominant machining activities that have been well 

established in industry and heavily explored in past decades. 

Among these three, most of the research has been persuaded 

towards milling owing to its versatile and complex nature. 

Milling can be operated in multiple degrees of freedom through 

more than one cutting teeth (edges) – usually called a toothed 

milling cutter. Any misconduct during machining affects the 

cutting tool and leads to its in-process failure. Consequently, it 

also disturbs the workpiece and degrades its surface finish, 
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reduces machining accuracy, causes idle time – interruptions, to 

name a few. Hence, tool condition monitoring (TCM) has 

gained much consideration and is being profoundly investigated 

[6, 19, 35]. Considerable work has also been carried out 

focusing on the milling tool condition monitoring [20, 36, 39]. 

In spite of the many works, detection of in-process failures 

continues to be a challenge. TCM is considered to be a part of 

preventive and corrective maintenance however tending 

towards predictive and reinforced maintenance as a need of 

intelligent services anticipated in the fourth industrial 

revolution. Applying Machine Learning (ML) and artificial 

intelligence (AI) assists in developing an intelligent framework 

for TCM to track and avoid tool failures well before they occur. 

This is mostly considered either as ML-based classification 

(specific condition as healthy or faulty) or ML based prediction 

(continuous value) via regression. A lot of ML-based regression 

algorithms have been established for predicting cutting tool 

remaining useful lifespan (RUL) and few failures. Different 

techniques using the entire spectrum of the AI tools such as 

classification tools [5, 18, 23], decision trees [10, 11, 13, 14], 

artificial neural networks [12, 21, 31, 40], autoencoders [3, 15, 

28, 30]. In summary of the literature review, most of the 

researchers employed supervised learning methods which yield 

potential results without any doubt however they limit 

themselves to classify data as supervised and prone to type II 

errors in case of lack of feature engineering. Hand crafted 

features in conventional machine learning requires a good 

knowledge of signal patterns and corresponding faults and on 

the other hand, deep learning models are unable to explain 

reasoning behind decision making. On the whole, training of 

supervised ML learning algorithms need precise data and deep 

learning algorithms on the other hand perform well on datasets 

of high volume. 

Some researchers indeed have employed the unsupervised 

learning approach for tool condition monitoring and 

classification. Ashfahani et al. [1] used unsupervised continual 

learning method in tool monitoring systems to detect the tool 

wear state. Shi et al. [27] used unsupervised learning for 

monitoring tool breakage. They posed the problem as a binary 

classification problem for anomaly detection. Torabi et al. [32] 

applied clustering methodology for fault detection in high speed 

milling using force and vibration signals. The applicability, fault 

rate and feasibility of clustering method were discussed within 

the framework of state of the art studies. Gittler et al. [7] 

predicted the tool wear condition during milling via 

unsupervised machine learning approach. The tool condition 

was predicted with meaningful and accurate values according to 

the results. Brito et al. [2] worked on the definition of the tool 

wear condition during turning by utilizing self-organizing map. 

The authors demonstrated that using vibration acceleration 

signals, it was possible to estimate the tool wear with 92% 

accuracy. Rozo et al. [4] used Gaussian mixture model based 

clustering for the classification. They also provide an excellent 

overview of the different clustering techniques used for the tool 

classification. Specifically for milling tool condition monitoring. 

Yu [38] also  proposed an adaptive technique based on Gaussian 

mixture model for determination of the cutting tool performance. 

The model developed showed a good performance in terms of 

indicating the performance characteristics of  

a cutting tool. Li et al. [16] used the partitioning around medoids, 

as the clustering technique. They argue that the PAM is 

inherently more robust in the presence of outliers. They apply 

the methodology for determining the tool wear state and use 4 

classes for determining the degree of wear. The tool wear degree 

classification problem has also been investigated by Torabi et al. 

[33]. Liu et al. [17] used the unsupervised learning approach for 

chatter detection. They employed a combination of Gaussian 

mixture model and k-means clustering for the detection and 

binary classification. An excellent review of the machine 

monitoring system over the last decade has been carried out by 

Ahmad et al [9]. Tran et al. [34] also reviewed the machine 

learning based tool condition monitoring systems including 

cloud migration, shared knowledge databases and custom 

networks to enlighten the future of tool monitoring systems. 

Based on the review of the literature, there is no work that 

deals with multi-class classification of different kinds of 

damage in milling tool condition monitoring using unsupervised 

learning techniques without any feature engineering. This is the 

main contribution and novelty of the paper. In this study an 

unsupervised learning approach is developed for a multi-class 

classification of faults in a milling cutter tool. The principal 

component analysis (PCA) is used for dimensionality reduction 

and feature extraction. The first 6 principal components are then 

used with the k-means clustering approach for the classification. 
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Once the model is trained using minimal human intervention, 

new data sets can be projected onto the feature space and the 

condition can be determined. The problem of multi-class 

classification for milling tool condition monitoring taking into 

consideration this wide range of tool faults has not been dealt 

with in the best knowledge of the authors. In addition, to the 

multi-class classification, the outlined method is easily 

transferable to other problems as it requires very little data for 

training and operator skill for labeling and classification. The 

unsupervised learning approach has been applied instead of 

deep neural network in order to ensure that the approach can be 

used for online-tool monitoring in an industrial scale to monitor 

tools in a large facility with multiple parallel machining 

processes as well as ensure that damage may be detected with 

little training data. 

2. Experimentation and data collection 

In order to characterize progressive behavior and continuous 

deterioration of cutting tools in terms of cutting tool vibrations, 

experiments are planned meticulously. Design of experiments 

plays a crucial role in authenticating the datasets used for further 

processing and decision making. To generate data sets, vibration 

signatures were acquired for in-process damaged and damaged-

free configurations of a tipped tool, for face milling. The 

experimental setup was arranged in an industrial environment 

‘Axis Metal-cut Technologies’ based in Pune, India. In this 

research, data acquisition has been carried out twice; first by 

considering a set of machining parameters for training the 

algorithm and second to validate the results by blind dataset. 

The experimental arrangement used for both cases is 

represented in Figure 1. The details are provided in Table 1. It 

should be noted that the sensor location was chosen at the top 

of spindle as the rotation of the spindle is considerably higher 

(1000 – 2500 rpm). At that location a high amplitude signal is 

observed. Experiments were designed to capture anomalous 

moments of various in-process faults such as edge fracture, 

notch and crater wear, flank face and nose radius wear etc. The 

efficiency and robustness of monitoring systems is fully 

dependent on the severity of the defective conditions and input 

factors of machining under which the vibrations data was 

acquired. For the blind data set, the tool was inspected and the 

size of each fault was measured using the metallurgical 

microscope. The size of various faults was determined using the 

metallurgical microscope and the captured images for the tool 

are provided in figure 2.  The size for each fault are specified in 

Table 2. The fault-free inserts used in machining were brand 

new inserts, i.e., never used before as shown in Figure 3. On the 

other hand, cast out defective inserts (such as edge fracture, 

notch and crater wear, flank face and nose radius wear etc. as 

shown in Figure 4) were collected and faulty configurations 

were considered.

 

Fig. 1: Experimental Setup. 
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Table 1. Experimental Setup details. 

Sr. No. Property Specification 

1. Equipment 

Vertical Machining Center (VTEC Model: VF4000 with table travel 4200 mm along X-axis, 

spindle head travel 2300 mm along Y-Axis and vertical travel 920 mm along Z-Axis 

equipped with FANUC 18iMB CNC controller) 

2. Sensor 
PCB Piezotronics, Model: 352C03 Integrated Circuit-Piezoelectric of sensitivity (±10 %) = 

10 mV/g and range of ± 500gpk, frequency (≤5%) = 0.5-10,000 Hz 

3. DAQ system Dewesoft, Model:  DEWE–43A 

4. Work piece Mild steel hollow cuboid of section ‘C’ (650 250   100 in mm) 

5. Tool Milling cutter diameter was 63 mm and four inserts with carbide- coated teeth 

6. Microscope Conation Technologies, Model: SuXma-MOTO, with magnification range 50X to 1000X) 

                          

(a)        (b) 

(b)  (d) 

 

(e) 

Fig. 2. Verification of different tool faults under metallurgical microscope (a) wear at flank face (b) wear at nose radius (c) notch 

wear (d) crater wear (e) fracture at cutting edge.
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Table 2. Size of various faults. 

Sr. No. Type of fault Size (µ m) 

1 Wear at flank face 1300 – 1500 

2 Wear at nose radius 900 – 1000 

3 Notch wear 1800 – 2000 

4 Crater wear 1500 – 1650 

5 Fracture of cutting edge 2400 – 2500 

6 Built-up cutting edge 800 – 950 

 

 

Fig. 3. Defect-free (Normal) insert with the dimensions. 

 

Fig. 4. Defective inserts. 

The performance of the cutting tool primarily depends on 

three factors viz., the speed at which material removal is 

performed, table feed, and depth of the cutting, thus have been 

selected for the investigation. The standard machining 

parameters were chosen referring to the standard Komet catalog 

and usual formulae and were chosen as, cut depth 0.25 mm, 

speed 178 m/min, and table feed 1980 mm/min. By considering 

this machining inputs and tool configuration stated in Table 3, 

face milling operations were performed 7 times, and change in 

vibration was collected. To begin with data collection, the 

primary check was carried out to ensure the machine tool and 

its components are in a normal state. Initially, some rough cuts 

were performed to omit unevenness the random vibrations. 

Measurements were carried out at 20 kHz sampling rate for at 

least 20 s in each case. 

Table 3. Tool Configurations 

Sr. No. 1 2 3 4 Class label 

1 Normal Normal Normal Normal TN 

2 Normal Normal Normal Wear at flank face TWFC 

3 Normal Normal Normal Wear at nose radius TWNSR 

4 Normal Normal Normal Notch wear TWNT 

5 Normal Normal Normal Crater wear TWCT 

6 Normal Normal Normal 
Fracture of cutting 

edge 
TFCE 

7 Normal Normal Normal Built-up cutting edge TBUE 

For the data processing, the measured signal was divided 

into sets with 5000 samples. 15 of those sets were used for 

training. The unseen data sets were used for testing and 

validation. In addition to the training data, the blind data set was 

collected on the same machine with a different tool insert at  

a different time. As the machine used for the data collection was 

the same, the underlying vibrations of the machine are 

maintained. As different tool inserts were used the applicability 

of the method is much greater albeit at the current time has been 

tested only for one machine. 

3. Methodology 

As mentioned before, the unsupervised learning approach is 

used for classification problem. Unsupervised learning is a class 

of AI algorithms which use and identify patterns in unlabeled 

data sets without any human intervention. The application of 

unsupervised learning ensures that real-time monitoring is 

possible with minimal training data and at the same time 

minimal expertise of the operator. Also due to the unsupervised 

approach, minimal human intervention is needed, thus ensuring 

a large number of machines can be monitored simultaneously 

by one operator. 

The methodology can be explained in detail based on the 

figure 5. The methodology has the off-line part which can be 

viewed as the training of the unsupervised learning approach. 

The online part is for the real-time monitoring. During the 

training phase, data from multiple classes without labels is used. 

The data is pre-processed with de-noising to increase the signal 

to noise ratio in the measurements, followed by zero padding 

which allows a better resolution in the frequency domain. These 
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are standard procedures in signal processing. The discrete 

Fourier transform is then employed to convert the data from the 

time domain to the frequency domain. Then the PCA is done on 

the frequency domain data. The PCA is a commonly used 

feature extraction method which is applied with a view to 

project a high dimensional data into lower dimension data. PCA 

ensures that maximum information of the original dataset is 

retained in the dataset with the reduced no. of dimensions and 

the corelation between the newly obtained principal 

components is minimum. The mathematics behind the PCA may 

be found here [29]. The classification process is then carried out 

using first 6 PCs for the clustering through the k-means 

clustering algorithm. The coefficients from the PCA and the 

cluster means from the k-means clustering are used in the online 

system for classification. The k-means clustering is  

an unsupervised algorithm for partitioning the data into clusters. 

The algorithm works iteratively to yield centroids of k clusters 

with minimal error. The centroids are treated as the 

representatives of those clusters. More details of the k-means 

clustering algorithm may be found [26]. The new data is pre-

processed similar to the data in the training phase. The 

processed data is then projected on the PC space using the PCA 

coefficients and assigned the classes based on the Euclidean 

distance from the cluster means. The testing was carried out on 

unseen test data from the measurements collected in the same 

campaign as the training dataset as well as with the blind data 

from a completely new measurement campaign at a different 

time on the same machine, as explained in the experimentation 

and data collection section.

 

Fig. 5. Methodology flowchart.

It should be noted that, in the offline system, there are just 

three points of human intervention. In determining the pre-

processing, in determining the number of PCs taken for 

clustering and the number of clusters to be identified. In the pre-

processing stage, the DFT is used to convert the data from time 

to frequency domain. This is done based on the experience from 

conventional techniques, where spectrograms were used for 

determining damage in tools. The zero-padding is necessary to 

improve the resolution in the frequency domain. It improves the 

feature extraction but might increase the computational effort. 

The number of PCs to be used for characterization are taken on 

the basis of their total contribution. The value of 90% is 

commonly used in the PCA based processing [22, 37]. The 

number of clusters to be used needs a little operator insight and 

knowledge of the training data. But once these parameters are 

established, the online system is completely without any human 
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intervention. This is the key benefit of using unsupervised 

learning. This technique is easily scalable and needs very 

limited data for training as compared to the deep neural network 

techniques. Also, at no point in the offline and online part are 

the data labels for the data sets needed and hence the 

methodology is identified as unsupervised learning. 

4. Results and Discussion 

This section discusses the step-by-step results for the 

methodology employed. 

4.1. Offline system setup 

The raw data was collected using tools in different conditions. 

The raw data for all the cases is presented in Figure 6. As can 

be seen, there is a difference in the time signatures but not a lot 

of insights may be obtained from the time domain data. So the 

data was converted to the frequency domain. The frequency 

spectrum is shown in Figure 7. As can be seen, there are 

significant differences in the peaks, but the changes are far too 

many and hence are beyond the capabilities of human 

comprehension to summarize.  

Hence, the PCA was used to reduce the dimensionality of 

the data. The PCA for the first 6 components are shown in 

Figure 10. The different colours indicate different tool 

conditions. It should be noted that the different colors shown in 

the PCA are for presentation only. The data used for the PCA 

was not labeled. It can be seen that there is a fairly good 

clustering of the same tool condition. But at the same time using 

just 2 PCs might lead to misclassification as the classes are 

fairly close to each other particularly in PC5 and PC6. The 

contributions of each of the PCs are shown in Figure 10c. Only 

the first 6 PCs were used as the total contribution for the 6 PCs 

exceeds 90% which is taken as a good standard for the depiction 

of the sensor features and differences [22, 37]. 

Once the components are known, the k-means clustering 

algorithm is used for the classification. The input parameter 

apart from the PCA scores is the number of classes that are to 

be identified. The definition of the number of classes may be 

done through sensitivity studies as done in [25] or based on the 

knowledge of the investigator. The clustering was done using 

the first 6 PCs but only the first two PCS are shown in the figure 

9 for the sake of conciseness. If the number of clusters to be 

identified is 7, comparing to Figure 10d, we can see that the 

identified clusters are not in line with PCA results which 

indicates severe misclassification. On the other hand, if the 

number of clusters to be identified is given as 6, the clusters 

related to fracture of cutting edge, and built up cutting edge are 

grouped together and the other clusters are accurate with the 

distribution shown in Figure 10d. As the tool damage identified 

will be still related to cutting edge, thus helping us identify the 

problem. Hence a clustering approach with 6 clusters will be 

carried on from here. For the 6 clusters approach the agreement 

between the identified clusters perfectly matches those obtained 

from the PCA plot knowing the labels. Again, it needs to be 

highlighted that the data sets were not labeled but only the total 

number of different classes was used as the input. These results 

indicate that the unsupervised learning approach outlined can 

indeed perform multi-class classification. So, the new data can 

be used in the online-system setup and used for assessment. The 

coefficients obtained from the PCA and the cluster centroid 

coordinates obtained from the k-means clustering are then are 

then used for the online system. The PCA coefficients allow 

projection of the new data in the equivalent PC space. While the 

proximity to the cluster centroids allows classification
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Fig. 6. Comparison of time domain signals in different conditions. 

 

Fig. 7. Comparison of frequency domain signals in different conditions. 
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(a) (b) 

               

(c)           (d) 

Fig. 8. PCA projections for training data set (a) PC1 v/s PC2 (b) PC3 v/s PC4 (c) PC5 v/s PC6 (d) Contribution of first 6 PCs. 

 

Fig. 9. K-means clustering (a) with 7 classes (b) with 6 classes.

  
(a) (b) 
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4.2. Online system setup 

Once the system is trained and put online, the new data collected 

can easily be projected into the PC space and using Euclidean 

distance in 6 dimensional space the cluster number may be 

identified. The figure 10 shows the projection of two such data 

sets from unseen test data. The projections are slightly different 

than the training data, but indeed are projected in the vicinity of 

the trained data. In order to determine the statistical stability of 

the method, 100000 random samples from the unseen data were 

tested for the classification performance. As can be seen a very 

high accuracy of classification is obtained with maximum 

misclassification of 0.7%. 

The colours used for the same class are kept similar. The 

projected data is shown with ’diamond’ symbol. Based on this 

the validity of the projections can be ascertained. The cluster is 

assigned based on the Euclidean distance from the cluster mean 

obtained from the k-means clustering algorithm. The statistical 

stability of the approach and the validity to the unseen data set 

was then determined in the confusion matrix. The accuracy of 

the classification is excellent, but there are 9 potential false 

positive classifications which may be of concern. The false 

positive is the condition where the damage is present and missed 

by the algorithm. This damage when not detected early may lead 

to catastrophic failure. In order to avoid this solution, more 

studies were carried out for the 9 misclassified signals. The 4 

preceding 5000 samples and 4 following samples were taken 

and classified. They are shown in Table 4. As can be seen there 

is some misclassification, but out of the 9 sets presented, most 

of the samples will be correctly classified. The largest 

misclassification was for 10000 samples which at 20 kHz 

sampling rate lasts 0.5 s. Hence, we can conclude that the false 

positive misclassification will not lead to a large damage later 

as it will be caught in a short time.

  

(a)                                                                               (b) 

           

(c)                                                                                    (d)  

Fig. 10. Results for testing dataset (a) Projection of test data in PC1 v/s PC2 space (b) Projection of test data in PC3 v/s PC4 space 

(c) Projection of test data in PC5 v/s PC6 space (d) Confusion matrix for statistical testing. 

  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

This indeed shows that the proposed methodology has  

a potential for real time tool condition monitoring, and the risks 

of false positive classification is well managed. The next section 

provides some additional studies that show the robustness and 

stability of the methodology which is another essential 

characteristic of the proposed technique. Another point to note 

is that, as the computational effort and the memory needed for 

the methodology is not high, the methodology can be 

implemented on a small IC and allow a low cost and easily 

scalable monitoring system which works in real time is possible.  

Table 4. Analysis of False Positive Classification. 

Sample numbers False Positive incident 

 1 2 3 4 5 6 7 8 9 

n-4 4 4 4 4 4 4 4 4 4 

n-3 4 4 4 4 4 4 4 4 4 

n-2 4 4 4 4 4 4 4 4 4 

n-1 4 4 4 1 4 4 6 4 4 

n 1 1 1 1 1 1 1 1 1 

n+1 4 1 4 4 1 4 4 1 4 

n+2 4 4 4 4 4 4 4 4 4 

n+3 4 4 4 4 4 4 4 4 4 

n+4 4 4 4 4 4 4 4 4 4 

▪ n is time signal with false positive 

▪ 4 corresponds to class TF CE + TBUE  

▪ 1 corresponds to class TN 

▪ 6 corresponds to class TW CT 

4.3. Sensitivity studies 

In order to check the robustness of the methodology developed, 

some sensitivity studies were carried out. The studies aim at 

showing the applicability of methodology and its performance 

under different conditions. The studies covered include, the 

classification performance using different amounts of training 

data (training sets), Classification performance for different 

sample size, classification performance for different number of 

PCs used for classification. These tests are carried out 

corresponding to the user inputs provided in the offline system 

setup stage. They show that the methodology is not overly 

sensitive to the chosen parameters (small difference in the 

tuning parameters only results in marginal change in the 

performance), so a small error in the tuning parameters will not 

affect the performance of the methodology. For a multi-class 

classification problem, many performance metrics have been 

proposed in the literature [8]. For the sake of this study, 

accuracy and false-positive rate is chosen.  

 

Fig. 11. Sensitivity of methodology to number of PCs used for 

classification a) Accuracy b) False Positive Rate. 

The figure 11 shows the accuracy and false positive rate for 

using different number of PCs for the classification. As can be 

expected, as the number of PCs used increases the accuracy as 

well as the FP rate improve. The improvement, for each PC 

added goes down which is expected as the contribution of the 

later PCs to the variation is lower.  

 

Fig. 12. Sensitivity of methodology to number of datasets used 

for training a) Accuracy b) False Positive Rate. 

The figure 12 shows the performance with increase in the 

number of training datasets. These results too follow the 

intuitive trend, as the number of data sets increase the 

performance improves. The figure 13, presents the performance 

when different size of samples were used in each dataset. As can 

be seen, first as the number increases from 1000 to 5000 and 

improvement is seen. While for the 10000 samples the 

performance falls. This behavior can be explained based on the 

fact that, in order to maintain the amount of data used for 

training, when the size of the data set was increased, the number 

of training data sets was reduced. Hence, when the sample set 

size is 10000 samples the number of training sets are fewer 

leading to increased error in classification. In summary, the 

proposed technique even after the use of PCA maintain the 
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physical nature of the system and make sense intuitively (eg: 

more data leads to better classification, more PCs (information) 

leads to better classification etc.) Hence the technique is 

considered robust and requiring only limited operator skill for 

calibration. 

 

Fig. 13. Sensitivity of methodology to size of datasets used a) 

Accuracy b) False Positive Rate. 

4.4. Comparison with ML based techniques 

The same dataset has been used with a range of ML algorithms 

and has been presented by Patange et al. [24]. The performance 

of the above technique may be compared to the once presented 

by Patange et al. [24]. Under similar sample size and training 

datasets, the unsupervised approach seems to outperform the 

hand-crafted features. The maximum accuracy obtained with 

the ML tree algorithms was 96.25% while the proposed 

technique achieves 97.4%. The accuracy may be further 

improved with minimal increase in computation time to 99.77%. 

Furthermore, the proposed unsupervised learning approach 

needs very little operator input, and expertise, at the same time 

is found to be computationally very efficient. The projection and 

classification takes approximately 0.007 s as compared to 0.2 s 

reported in [24]. A point to note is that the, the ML algorithms 

were implemented in visual basic (VBA), while the current 

unsupervised learning approach is implemented in Matlab, the 

processing time is not directly comparable. But we can indeed 

conclude, that it is suitable for real time monitoring. A possible 

reason for the better performance of the methodology over the 

ML technique, is the choice of the features, the features used by 

Patange et al. are statistical in nature, and only ascribe the 

difference in the signals obtained in terms of the change in the 

statistical parameters. On the other hand, the PCA reduces the 

dimensionality while maintaining the features which can 

explain the maximum deviation in the data set. So indeed due to 

the better and targeted feature extraction strategy, the 

performance of the methodology is better. 

5. Validation on Blind data 

The methodology was applied on dataset obtained separately 

with a different tool insert which is so-called ’blind dataset’ 

(completely unseen by the training). The results are presented 

in form of a confusion matrix in figure 14.  

 

Fig. 14: Confusion matrix for blind dataset. 

As the amount of reliable data from the blind tests was limited, 

the number of runs made are quite small. But the method shows 

high accuracy (> 98.5%) and there are no false positive 

incidences. Hence it can be said that the outlined method gives 

excellent results for the multi-class classification of different 

faults in the milling tool. In summary, as the training data 

needed and the operator skill required for the methodology is 

limited, the calibration step for each machine can be easily 

conducted separately. Also, as the human intervention is very 

minimal, multiple machines can be monitored in parallel with 

individually maintained databases. Thirdly, as the training stage 

is not time consuming, datasets for the calibration can be 

regularly updated, in order to take into consideration the change 

in the machine vibration parameters. Hence the methodology 

has a huge potential in application on the shop floor with a fleet 

of machining machines with minimal human supervision. 

6. Conclusions and future work 

The paper outlines a methodology for multi-class tool condition 
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classification based on unsupervised learning principles. The 

methodology includes a two-stage approach. The offline stage 

is the training step carried out using the training data. The PCA 

is used for feature extraction and dimensionality reduction. The 

PCs from the PCA are used for classification using the k-means 

clustering algorithm. For the TCM the collected data in real time 

is projected on the PC space and then classified based on the 

Euclidean distance to the median obtained from the k-means 

clustering approach. The key takeaways from the study on the 

vertical milling center with tool faults are: 

▪ Multi-class classification is possible (6 classes) 

▪ High accuracy (≈ 97%), and few false positives 

▪ Methodology is robust and works on blind data 

▪ Stable performance, not strongly correlated to the 

chosen training and signal processing parameters 

Although, the methodology works in the given conditions 

and with blind data, there remain some questions on the cross-

applicability of the technique to data from other machines as 

well as different machining conditions. This is identified as an 

area of future work. Tackling these problems is identified as the 

next step of research. Another significant shortcoming of the 

present study is that the effect of the different cutting conditions 

on the performance of the methodology has not been studied. 

This has to be investigated experimentally and is recognized as 

another area of future work. But as mentioned earlier due to low 

amount of training data necessary, the training data set can be 

enlarged to include different conditions. The increase in the data 

with the increase in the complexity will not be of the same order 

as is expected in other AI based data-driven techniques. 

Furthermore, the methodology is not computationally intensive 

and the small increase in training data will not adversely affect 

the real-time implementation.
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